J. Phys. A: Math, Gen., 13 (1980) 251-262. Printed in Great Britain

Renormalisation group study of a two-dimensional lattice
model with directional bonding

B W Southernt and D A Lavisi

Institut Laue-Langevin, 156X Centre de Tri, 38042 Grenoble Cedex, France

+ Present address: Physics Department, University of Manitoba, Winnipeg, Manitoba,
Canada R3T 2N2.

$On leave from Mathematics Department, Chelsea College, University of London,
Manresa Road, London SW3 6L.X, UK.

Received 5 March 1979

Abstract. Using real-space renormalisation-group methods we study the two-dimensional
bonded lattice fluid model on a triangular lattice introduced by Bell and Lavis to describe
the anomalous properties of water. We obtain the phase diagram for different values of the
bondingstrength. There are three different phases which correspond to the solid, liquid and
gas phases of the model. The fixed points which control the transitions between these
different phases are determined and the melting transition is found to be second-order in
contrast to the predictions of mean-field theory. The molecular density and isothermal
compressibility are calculated along an isobar which traverses all three phases and also along
the coexistence curve and the results are compared with previous mean field calculations of
these quantities.

1. Introduction

Since the work of Bernal and Fowler (1933) it has been widely recognised that many of
the ‘anomalous’ properties of water arise from the competition between open and
close-packed forms of molecular order which originates in the ability of the water
molecule to form tetrahedrally directed hydrogen bonds. Beil and Lavis (1970) have
considered a simple bonded-fluid model on a triangular lattice in which hydrogen
bonding was represented by attributing to each molecule preferential bonding direc-
tions. Each molecule has three bonding arms at angles of 120° to each other and two
distinct orientations in which the arms are directed towards nearest-neighbour sites.
Since the molecules can be present or absent, each site can be in one of three possible
states which may be represented by the spin states S = +1, 0 of a spin-1 Ising model.
Mean field calculations (Lavis 1973, 1975) and an exact transfer matrix treatment
(Lavis 1976) of this model were able to reproduce some of the main features of the
anomalous behaviour of water. The transition from the closed-packed liquid phase to
the open (honeycomb) solid phase was found to be first-order with the characteristic
decrease in density of the water-ice system.

In this paper we investigate the model using a block-spin real-space renormalisation
group (RSRG) method (for a review see Niemeijer and van Leeuwen 1976). In order to
preserve the sublattice ordering which occurs in the solid phase, we use the nine-site
cluster employed by Schick et al (1977) in their study of the spin-5 Ising model and by
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Schick and Griffiths (1977) for the 3-state Potts model on the triangular lattice. The
number of necessary coupling constants is determined by the size of the basic cluster
and the symmetry of the model. In our case, we must consider a 6-dimensional space of
couplings. The model is a slight generalisation of the Blume-Emery-Griffiths (1971)
model which has been extensively studied using RSRG methods {Berker and Wortis
1976, Adler et al 1978, Mahan and Girvin 1978). With a suitable choice of relation-
ships between the coupling constants, the Blume-Emery-Griffiths model reduces to a
3-state Potts model with a 2-dimensional coupling-constant subspace. The analogous
special case of the Bell-Lavis model has a 3-dimensional subspace and this case has
been studied by Young and Lavis (1979) using the same methods as in the present
paper. They found all the fixed points in the extended Potts subspace and suggested
that melting in the Bell-Lavis model is a second-order transition belonging to the same
universality class as the ferromagnetic 3-state Potts model. However, our present
calculations indicate that the melting transition does not belong to this universality
class, although it is indeed second-order. The fact that the transition is continuous is
unfortunate for the correspondence of the model with water, but this failure is probably
associated more with the 2-dimensionality of the lattice than with its bonding structure.

We describe the model and the renormalisation group transformationin § 2. In § 3,
the results for the phase diagram of the Bell-Lavis model are presented together with
the fixed points and critical exponents describing the transitions between the gas, liquid
and solid phases. The calculation of the thermodynamic functions is outlined in § 4 and
a comparison is made of our present results with the previous mean-field and transfer-
matrix calculations. Our conclusions are summarised in § 5.

2. The model

As indicated in the introduction, the three possible states of a site on the triangular
lattice are represented by the states § = +1, 0 of a spin-1 Ising model. The molecular
states are identified with § ==1, as shown in figure 1, and § =0 represents a vacant
state. A bonded pair of molecules has interaction energy —(e + w) and an unbounded
nearest- neighbour pair has interaction energy —e. In order to take proper account of
sublattice orderings the lattice is divided into three equivalent sublattices A, B, C as
indicated in figure 1. Within the grand canonical distribution with chemical potential u,
the Hamiltonian of the system is given by (Young and Lavis 1979)

%=§ [—3u(SX +83 +S&)+5w(SaSs+SpSc+ScSa)

~He+iw)(SASE +SASE +SESX) +5w(Sa—Se)(S—Sc)(Sc—Sa)] (1)

where the summation is over all elementary triangles A of the lattice and S,(a =
A, B, C) denotes the spin of the site on sublattice « in triangle A.

Apart from the final term in (1) this Hamiltonian has the same form as the
Blume-Emery-Griffiths model. The special feature of the present model is exhibited
by the final term which removes the degeneracy associated with cyclic and anti-cyclic
ordering of the states § = +1, 0, —1 around an elementary triangle. For w > 0, cyclic
ordering is favoured and this is the case that will be studied in this paper.

In any RSRG calculation all terms which will be generated by the recurrence relations
must be included even if they are not present in the initial Hamiltonian. In our case,
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Figure 1. A portion of the triangular lattice showing the convention adopted for labelling
the three sublattices A, B and C. A bonded pair of molecules is also shown with their
corresponding spin states indicated.

these are simply all the terms which are invariant under simultaneous inversion
(S » —S) of all spins plus the final term in (1). Although this term is not invariant with
respect to simultaneous inversion of all spins, it does not generate any new terms. Inthe
general case, we have the Hamiltonian (Young and Lavis 1979)

—B¥ =§ H, (B=1/kgT) (2a)
with
Hy=—3A(8% + S5 +82)+3T(SaSp+ SpSc+ScSa)

+31K (S3S2% +S3SE + S48 )+ LSLS3S2

+ MSASeSc(Sa+ Sa+Sc)—#U(Sa— Sp)(Sa— Sc)(Sc— Sa). (2b)

Comparing equations (1) and (2) we observe that the RSRG method generates two
additional terms involving all three spins of the elementary traingles with coupling
constants L and M. The spectrum of H, for each elementary triangle of the lattice has
seven different configurations C; with corresponding energiese; (j=1,2,...,7). These
states are indicated in table 1 where the energies ¢; are given both in terms of the
coupling constants of equation (26) and also the original parameters of the model
defined by (1).

We use the block spin transformation employed by Schick ef al (1977) in their study
of the spin-3 Ising model. An initial cluster of nine sites is chosen such that three sites
belong to each of the three sublattices and periodic boundary conditions are applied.
Application of the renormalisation group transformation reduces the nine-site cluster
to a cluster of three sites, each one belonging to one of the three sublattices, and

Table 1. Spectrum of H,.

Energy
Configuration C; Degeneracy w; ¢ e?
¢; [0,0,0] 1 0 0
C, [%1,x1, 1] 2 ~A/2+3T/24+3K/24+L+3M  B(u+3€)/2
Cs [0,0, £1] 6 --A/6 Bu/6
Cs [0, £1, +1] 6 -A/3+J/2+K/2 B(2u+3€)/6
Cs [£1,F1,¥1) 6 -A/2-J/2+3R/2+0L-M Blu+3e+w)/2
Cs [+1,0, —1]yciic 3 -A/3-J2+K/2+Q/2 B2u+3e+3w)/6
G [+1, =1, Olansieyetic 3 -A/3~J/2+K/2-8/2 B(2u+3€)/6
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corresponds to an increase in length scale by a factor of V3. To preserve the 3-state
Potts symmetry of the model we adopt the weight function used by Schick and Griffiths
(1977) and Young and Lavis (1979).

In addition to the Potts subspace, the Hamiltonian in (2) reduces to a spin-3 Ising
model in two distinct limits. In the case w - (A->—00) the state $ =0 is suppressed
and we have a nearest neighbour spin-3 Ising model with coupling constant —J —2M =
—Bw/4. Our choice of weight function becomes equivalent to the ‘majority rule’ weight
function of Schick eral (1977) in this limit and we obtain their results for the behaviour
in the absence of a magnetic field and three spin couplings. That is, there is a
ferromagnetic transition for w < 0 but no transition in the case w > 0 in agreement with
the known exact results for the triangular lattice. Since we are concerned with this latter
situation which favours bonding, the antiferromagnetic Ising model on the triangular
lattice will correspond to the liquid phase of the model characterised by a large degree
of short-range order, but no long-range order. This feature was also correctly obtained
in the mean field approach of Lavis (1973). The second special case corresponds to the
limit J = M = {) = 0 where the distinction between S = +1 is suppressed. If we define a
new variable 7 = 2§%— 1 at each site (Griffiths 1967), then we may rewrite (2) as a spin-3
Ising model with both a magnetic field and three spin couplings present. In this limit our
weight function for the § variables does not reduce to a ‘majority rule’ for the ¢ variables
since the symmetry between ¢ = £1 is not preserved.

Defining the variables

x; =exp(e;) (G=12,...,7) (3)
the recurrence relations can be written in the form
(x))°=Gx1, %2, . . ., x7) {Z} Pi({nDxlixse . x5 @)

where n; is the number of triangles in the nine-site cluster in state C; of table 1, P;({n,}) is
the degeneracy associated with {n;} and G(x1, x2, ..., x7) is given by the condition
x1=x1 =1. The parameter G is a constant term in the Hamiltonian generated at each
iteration of (4) and will be used in § 4 to calculate the thermodynamic functions. We
start with values of the x; variables in (3) related to the coupling constants of the model
in (1) as in table 1. The recurrence relations (4) then determine trajectories in the full
6-dimensional space of couplings. A trajectory which starts at a point where the
behaviour of the system is not critical will iterate to a sink which characterises that
phase. These regions are separated by the critical regions which form domains of
attraction for the critical fixed points. Once these fixed points have been located the
recurrence relations can be linearised about the fixed points and the eigenvalues A; of
the linear equations can be calculated. The critical exponents y; are related to the
eigenvalues by A; = b’ where b is the scale factor and is equal to V3 in the present
calculation.

3. Phase diagram and critical behaviour

The behaviour at zero temperature of the model defined in equation (1) can be obtained
most easily by comparing the ground-state energies of the seven possible configurations
of each elementary triangle. These energies are given in terms of the parameters u, w
and ¢ in the final column of table 1. In our analysis we shall only consider the cases for
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which both € =0 and w =0 since this corresponds to the situation in water where
hydrogen bonding is believed to play an important role.

In the absence of bonding, i.e. w = 0, the stable configuration at zero temperature is
the vacant state C; if u <—3e whereas the close-packed states C, and Cs are most
stable if u > —3e. As the strength of the bonding parameter w increases from zero, the
ground state characteristics of the system remain qualitatively unchanged until w = 3e.
The only difference for 0 < w < 3¢ is that the degeneracy between the states C, and Cs is
lifted and Cs is the most stable configuration if u > —3¢ + w. However, for values of w
larger than 3e, there is a range of the parameter u in which the open (honeycomb)
bonded phase is the stable ground state and this is represented by the state Cg of table 1.
The condition for Cs to be the most stable phase is determined by —3(e +w) <u < —6e.
The vacant state C; is most stable for u < —3(e + w) and the close-packed state Cs is
most stable for u > —6¢. Since the molecular number densities of the states C;, Cs and
Csare 0,3 and 1 respectively, they correspond to the gas, solid and liquid phases of the
Bell-Lavis model. The liquid ground state Cs is highly degenerate having the same
ground state entropy as the spin-3 Ising antiferromagnet on a triangular lattice (Bell and
Lavis 1970).

The domains of these three phases at finite temperature correspond to the domains
of attraction of the corresponding sinks of the recurrence relations in equation (4). In
terms of the variables x; defined in equation (3), the sinks for the solid and gas phases are
xi/ x> 8;6 and x;/x1 - 8;1 respectively. The sink for the liquid phase at zero tempera-
ture is a special fixed point, x;/ xs = §;s, and is accessible only for trajectories which begin
at zero temperature. It is the same fixed point as AF' that was found in the work of
Schick et al (1977). However, at any finite temperature in the liquid phase all
trajectories iterate to a sink given by x;/xs-=(8;2+6;5). A numerical study of the
trajectory flows allows us to construct the phase diagram and to determine the
boundaries which separate one phase from another.

Our results for the phase diagram in the case w = 0, where the bonded solid phase is
not energetically favoured, are shown in figure 2(a) as a function of the reduced
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Figure 2(a).
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Figure 2. Phase diagram for the Bell-Lavis model in terms of the variables u/€ and B¢ for
different values of the ratio w/e: (a) w/e =0, () w/e=4 and (c) w/e =10. First-order
boundaries are indicated by dashed lines and second order boundaries by full lines. The
critical end-point for the liquid-gas transition is designated by Cy in (a) and (b) while the
point where all three phases meet is designated by T; and T, in (b) and (c) respectively.

variables u/€ and Be. We find a first-order phase boundary (broken curve) separating
the gas and liquid phases. This boundary asymptotically approaches wu/e =—3 as
Be -» o and terminates at a critical end point Cy, at a finite temperature. The first-order
transition is controlled by a discontinuity fixed point LG which has a characteristic
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relevant exponent y; = d = 2 (Nienhuis and Nauenberg 1975). The critical end point Cq
lies in the domain of attraction of a second fixed point X which has two relevant
exponents. The coordinates and exponents of these fixed points are given in table 2.

Figure 2(b) shows the phase diagram for the case w =4e. The solid phase now
appears between the liquid and gas phases at low temperatures. We have chosen this
value of w in order to compare our results with the mean-field calculations of Lavis
(1973). However, we shall postpone a detailed comparison until § 4. The liquid-solid
transition in figure 2(b) is second-order and controlled by the fixed point LS of table 2
which has only one relevant exponent. The gas—solid transition is first-order and
controlled by the discontinuity fixed point GS while the liquid~gas transition at
temperatures below the critical end-point C, is again controlled by LG with the
transition at Cy described by fixed point X. These three phase boundaries meet in figure
2(b) at the point T, which lies within the domain of attraction of fixed point Y of table 2.
This latter fixed point has two relevant exponents and describes the meeting of one
critical and two first-order surfaces. The exponents exhibit typical critical end-line
behaviour (Berker and Wortis 1976), combining a leading y; = d =2 witha y,=1:129
in close agreement with the leading exponent of LS.

Figure 2(c¢) shows our results in the case w = 10e. At this larger value of the bonding
strength the phase diagram is qualitatively different from that shown in figure 2(b). The
first-order transition between the liquid and gas phases has disappeared but the
gas-solid and liquid-solid transitions are still described by the fixed points GS and LS
respectively. These two phase boundaries meet at point T in figure 2{c) and this point
lies in the domain of attraction of fixed point AF". This latter fixed point is situated in
the extended Potts subspace studied previously in the paper by Young and Lavis (1979)
and it has two relevant exponents. The changeover from the type of behaviour shown in
figure 2(b) to that found in figure 2(c) occurs at an intermediate value of w when the
domains of attraction of fixed points X, Y and AF" intersect at a point T5. This point lies
in the domain of attraction of the fixed point Z of table 2 which possesses three relevant
exponents and describes the intersection of two first-order and two second-order
surfaces.

Melting in the Bell-Lavis model is thus found to be a second-order phase transition
in contrast to the mean-field calculations which predicted a first-order transition.
However, this difference may be a consequence of the low dimensionality of the lattice.
Mean-field theory also predicts a first-order transition for the ferromagnetic 3-state
Potts model in two dimensions, whereas exact results obtained by Baxter (1973) show
that it has a continuous transition. Our results are not in accord with the suggestion by
Young and Lavis (1979) that the melting transition in the Bell-Lavis model belongs to
the same universality class as the ferromagnetic 3-state Potts model. However, for
large enough values of the bonding strength w, the point on the phase boundary where
the second-order liquid-solid curve meets the first order gas—solid curve does indeed
belong to this universality class.

4. Thermodynamic functions

The partition function Z associated with the initial cluster of nine sites is given by

Z=Y {Z} P({nPx1'x3%. .. x77 (5)
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where the w; are degeneracy factors associated with the configurations of each elemen-
tary traingle and are listed in table 1. The remaining quantities are the same as those
appearing in equation (4). After the renormalisation group transformation (4) has been
applied, the partition function Z’ associated with the remaining cluster of three sites is
simply

Z= ; w;(x})°. (6)
Using (4) we find that the free energies per site are related as follows,

f=4InG+if )
where f=—5InZ, f'=-%In Z' and G is a constant term generated at each iteration of

the recurrence relations in (4). Iterating (7), we find that the free energy per site (in
units of kg T) can be written in the form
1

f(0)=%l 0'3-711'1 G(l) (8)

18

In practice, the infinite series converges very quickly and the free energy at any initial
values of the x; defined in (3) can be obtained after only a few iterations. Similarly, the
derivatives of the free energy f© can be obtained using a chain-rule of differentiation
(see Niemeijer and van Leeuwen 1976 for details).

In the case of the model under study, the pressure P of the system is obtained from
£ in (8) as follows

PVy= —kBTf(O) )]

where V) is the two-dimensional volume per lattice site. The pressure at any point in
the phase diagrams of figure 2 can be calculated and, in particular, the value of the
pressure on the boundaries which separate the phases. In this section we shall consider
only the case w = 4e. Figure 3 shows our results for the phase diagram of figure 2(b)
plotted as a function of PVy/e and kg T/e. The mean field results (Lavis 1973) as well as
the exact matrix calculations (Lavis 1976) are also plotted for comparison. Althoughno
phase transitions occur in the matrix calculations, the maxima in the compressibility can
be regarded as incipient phase transitions. The principal difference between our results
and the mean field calculations is that we find a second-order transition between the
solid and liquid phases.
The molecular number density p is given by

aP> af?
=) Vo= 1
p=(3), vo="% (10)
and the isothermal compressibility Kr is obtained from

Vo(in) _ 7L
T

A p? AT

(11)

Figure 4 shows the density and compressibility along the isobar PV,/e =0-1. Thisis an
isobar which passes through all three phases of the system as the temperature is varied.
At the highest temperatures the system is in the gas phase and a first-order transition
from gas to liquid occurs on lowering the temperature with corresponding dis-
continuities in p and Kr. At lower temperatures there is a second transition from the
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Figure 3. Pressure-temperature phase diagram of the Bell-Lavis model corresponding to
the case w/e =4 of figure 2(b). Our results are indicated by the full and broken curves. The
results of the mean field treatment are indicated by the dotted lines and the exact matrix
calculation results by the chain lines. The scale of the vertical axis changes by a factor of 5 at
PVo/E =0-2.

liquid to the solid phase with no discontinuity in density. The compressibility Ky
diverges weakly with an exponent ¥ which is related to the relevant exponent of the
fixed point LS of table 2 as follows: y =2(y; —1)/y: and has the value 0-2289. Notice
that there is a density maximum on the isobar but that it occurs in the solid rather than in
the liquid phase as would be the case for the water system (Eisenberg and Kauzmann
1969 p 183). This particular weakness of the model was also present in the mean-field
calculations of Lavis (1973) where the density maximum occurred in the metastable
liquid phase at a temperature below the freezing temperature. We have, however,
obtained a compressibility minimum in the liquid phase although this is probably a
direct result of the singular behaviour at the solid-liquid transition. In water this
minimum occurs with a discontinuity in K7 at the water-ice transition (Eisenberg and
Kauzmann 1969 p 184).

Figure 5 shows our results for the isothermal compressibility along the liquid—solid
side of the first order boundary T, C, of figure 2(5). The exponent y which describes the
divergence of Kt as the critical end point C, is approached along the coexistence curve
is given in terms of the relevant exponents of fixed point X and has the value
v=2(y;—1)/y>,=2-1847. However, as T, is approached along the coexistence curve,
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Figure 4. The quantities p and p*Ky/B8V, along the isobar PV,/e =0-1 are shown as a
function of kg T/e. The vertical scale changes by a factor of 200 at the value 1-0 and the
horizontal scale changes by a factor of 10 at kg T/e =1-75.
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Figure 5. The quantity p°Kr/BV, along the solid and liquid sides respectively of the
solid—gas and liquidwgas coexistence curve is shown as a function of kg7/e. The vertical
scale changes by a factor of 10? at the value 100.

the value of y is determined by the exponents of fixed point Y and has the value
v=2(y,—1)/y>=0:2288. This latter value of v is, as might be expected, very close to
that for the liquid-solid transition along an isobar. Of course, the isothermal compres-
sibility must have a minimum along the coexistence curve between the two singularities.
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This is also the case for the water system (Rowlinson 1969 p 55) but it is difficult to
regard this as a success for the Bell-Lavis model in view of the second-order nature of
the liquid-solid transition.

5. Conclusions

We have studied the Bell-Lavis model of a bonded lattice fluid on a triangular lattice
using RSRG techniques. In contrast to the mean-field calculations for this model, we find
that the transition between the solid and liquid phase is second-order. However, this
difference is most likely due to the low dimensionality of the lattice. Although the
two-dimensional bonding model does not correctly describe the melting transition that
is observed in water, a three-dimensional bonding model such as that proposed by Bell
(1972) for a Bcc lattice may in fact provide a more realistic description. We are
presently investigating this latter model using RSRG techniques.
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